Select top variable genes and perform prcomp
PCA(expression.matrix = NULL, ngenes = 1500, scaling = TRUE, npcs = 50)
expression.matrix | An expression matrix, with genes in rows |
---|---|
ngenes | number of genes used for clustering calculations. |
scaling | a logical of whether we want to scale the matrix |
npcs | an integer specifying the number of principal components to use. |
a list containing PCA results and variance explained
day2 <- day_2_cardio_cell_sample mixedpop1 <-new_scGPS_object(ExpressionMatrix = day2$dat2_counts, GeneMetadata = day2$dat2geneInfo, CellMetadata = day2$dat2_clusters) t <-PCA(expression.matrix=assay(mixedpop1))#>#>