performs 40 clustering runs or more depending on windows

clustering(
  object = NULL,
  ngenes = 1500,
  windows = seq(from = 0.025, to = 1, by = 0.025),
  remove_outlier = c(0),
  nRounds = 1,
  PCA = FALSE,
  nPCs = 20,
  verbose = FALSE,
  log_transform = FALSE
)

Arguments

object

is a SingleCellExperiment object from the train mixed population

ngenes

number of top variable genes to be used

windows

a numeric specifying the number of windows to test

remove_outlier

a vector containing IDs for clusters to be removed the default vector contains 0, as 0 is the cluster with singletons

nRounds

number of iterations to remove a selected clusters

PCA

logical specifying if PCA is used before calculating distance matrix

nPCs

number of principal components from PCA dimensional reduction to be used

verbose

a logical whether to display additional messages

log_transform

boolean whether log transform should be computed

Value

clustering results

Author

Quan Nguyen, 2017-11-25

Examples

day5 <- day_5_cardio_cell_sample mixedpop2 <-new_summarized_scGPS_object(ExpressionMatrix = day5$dat5_counts, GeneMetadata = day5$dat5geneInfo, CellMetadata = day5$dat5_clusters) test <-clustering(mixedpop2, remove_outlier = c(0))
#> Performing 1 round of filtering
#> Identifying top variable genes
#> Calculating distance matrix
#> Performing hierarchical clustering
#> Finding clustering information
#> No more outliers detected in filtering round 1
#> Identifying top variable genes
#> Calculating distance matrix
#> Performing hierarchical clustering
#> Finding clustering information
#> Done clustering, moving to stability calculation...