Find DE genes from comparing one clust vs remaining
find_markers( expression_matrix = NULL, cluster = NULL, selected_cluster = NULL, fitType = "local", dispersion_method = "per-condition", sharing_Mode = "maximum" )
expression_matrix | is a normalised expression matrix. |
---|---|
cluster | corresponding cluster information in the expression_matrix by running CORE clustering or using other methods. |
selected_cluster | a vector of unique cluster ids to calculate |
fitType | string specifying 'local' or 'parametric' for DEseq dispersion estimation |
dispersion_method | one of the options c( 'pooled', 'pooled-CR', per-condition', 'blind' ) |
sharing_Mode | one of the options c("maximum", "fit-only", "gene-est-only") |
a list
containing sorted DESeq analysis results
Quan Nguyen, 2017-11-25
day2 <- day_2_cardio_cell_sample mixedpop1 <-new_scGPS_object(ExpressionMatrix = day2$dat2_counts, GeneMetadata = day2$dat2geneInfo, CellMetadata = day2$dat2_clusters) # depending on the data, the DESeq::estimateDispersions function requires # suitable fitType # and dispersion_method options DEgenes <- find_markers(expression_matrix=assay(mixedpop1), cluster = colData(mixedpop1)[,1], selected_cluster=c(1), #can also run for more #than one clusters, e.g.selected_cluster = c(1,2) fitType = "parametric", dispersion_method = "blind", sharing_Mode="fit-only" )#>#>#>#>#> #>#>#> [1] "baseMean" "log2FoldChange" "lfcSE" "stat" #> [5] "pvalue" "padj" "id"