the training results from training were written to the object LSOLDA_dat, the summary_devidance summarises deviance explained for n bootstrap runs and also returns the best deviance matrix for plotting, as well as the best matrix with Lasso genes and coefficients

summary_deviance(object = NULL)

Arguments

object

is a list containing the training results from training

Value

a list containing three elements, with a vector of percent maximum deviance explained, a dataframe containg information for the full deviance, and a dataframe containing gene names and coefficients of the best model

Author

Quan Nguyen, 2017-11-25

Examples

c_selectID<-1 day2 <- day_2_cardio_cell_sample mixedpop1 <-new_scGPS_object(ExpressionMatrix = day2$dat2_counts, GeneMetadata = day2$dat2geneInfo, CellMetadata = day2$dat2_clusters) day5 <- day_5_cardio_cell_sample mixedpop2 <-new_scGPS_object(ExpressionMatrix = day5$dat5_counts, GeneMetadata = day5$dat5geneInfo, CellMetadata = day5$dat5_clusters) genes <-training_gene_sample genes <-genes$Merged_unique LSOLDA_dat <- bootstrap_prediction(nboots = 2,mixedpop1 = mixedpop1, mixedpop2 = mixedpop2, genes=genes, c_selectID, listData =list(), cluster_mixedpop1 = colData(mixedpop1)[,1], cluster_mixedpop2=colData(mixedpop2)[,1])
#> Warning: variables are collinear
#> Warning: variables are collinear
#> Warning: variables are collinear
#> Warning: variables are collinear
#> Warning: variables are collinear
#> Warning: variables are collinear
#> Warning: variables are collinear
#> Warning: variables are collinear
#> Warning: variables are collinear
#> Warning: variables are collinear
#> Warning: variables are collinear
#> Warning: variables are collinear
#> Warning: variables are collinear
#> Warning: variables are collinear
#> Warning: variables are collinear
#> Warning: variables are collinear
#> Warning: variables are collinear
#> Warning: variables are collinear
#> Warning: variables are collinear
#> Warning: variables are collinear
#> Warning: variables are collinear
#> Warning: variables are collinear
#> Warning: variables are collinear
#> Warning: variables are collinear
#> Warning: variables are collinear
#> Warning: variables are collinear
#> Warning: variables are collinear
#> Warning: variables are collinear
#> Warning: variables are collinear
#> Warning: variables are collinear
#> Warning: variables are collinear
#> done training for bootstrap 1, moving to prediction...
#> Warning: variables are collinear
#> Warning: variables are collinear
#> Warning: variables are collinear
#> Warning: variables are collinear
#> Warning: variables are collinear
#> Warning: variables are collinear
#> Warning: variables are collinear
#> Warning: variables are collinear
#> Warning: variables are collinear
#> Warning: variables are collinear
#> Warning: variables are collinear
#> Warning: variables are collinear
#> Warning: variables are collinear
#> Warning: variables are collinear
#> Warning: variables are collinear
#> Warning: variables are collinear
#> Warning: variables are collinear
#> Warning: variables are collinear
#> Warning: variables are collinear
#> Warning: variables are collinear
#> Warning: variables are collinear
#> Warning: variables are collinear
#> Warning: variables are collinear
#> Warning: variables are collinear
#> Warning: variables are collinear
#> Warning: variables are collinear
#> Warning: variables are collinear
#> Warning: variables are collinear
#> Warning: variables are collinear
#> Warning: variables are collinear
#> Warning: variables are collinear
#> done training for bootstrap 2, moving to prediction...
summary_deviance(LSOLDA_dat)
#> $allDeviance #> [1] "7.39" "11.39" #> #> $DeviMax #> dat_DE$Dfd Deviance DEgenes #> 1 0 7.39 genes_cluster1 #> 2 1 7.39 genes_cluster1 #> 3 2 7.39 genes_cluster1 #> 4 3 7.39 genes_cluster1 #> 5 4 7.39 genes_cluster1 #> 6 remaining DEgenes remaining DEgenes remaining DEgenes #> #> $LassoGenesMax #> NULL #>